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Uniprocessor Limits

 Heat wall
 Limited ILP

http://www.tomshardware.com/2005/11/21
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Multicore is here to stay

 Dual-processor laptops now
 Quad-core desktops
 8-core servers
 Lots more to come
 Vendors waiting for apps
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The Coming Crisis

 Parallelism common in high-end scientific computing
» done by experts, at great expense

 Also common in Internet servers
» “embarrassingly parallel”

 Has to migrate into the
mainstream
» programmers not up

to the task

http://tfp.killbots.com/?p=wall/@wall&name=&pag=3
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What TM is

 ﻿A way to simplify some forms of synchronization
— an alternative to mutual exclusion locks

 A way to improve scalability with respect to
coarse-grain locks
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What TM is not

 A way to make parallel programming easy
 A general-purpose synchronization mechanism
 A way to get free concurrency (or even scalability)
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﻿The basic idea is simple

 ﻿Programmer identifies atomic sections
 System serializes them, runs in parallel if it can
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Some details are not simple

 ﻿I/O and other irreversible operations
 Open nesting: causality loops, compensating actions,

high-level concurrency control
 Weak isolation, privatization
 Early release
 Condition synchronization (retry, ...)
 Alternative paths (or else, ...)
 Customizable backoff or retry policies
 Synchronizers or other cross-transaction communication
 Priorities
 Segregation of transactional and nontransactional objects or

types, for the benefit of SW implementations
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Not to mention

 ﻿Parallelization / identification of speculative tasks
 Ordering among transactions
 Performance tuning

» tools to find conflicts
» incentive to subdivide to avoid them

 When does this get uglier than locks?
(answer: very quickly)

 danger of overselling
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Some personal experience

 Delaunay mesh application
» 2500 lines of C++
» barrier-separated private and

transactional phases
 RSTM library-based STM

» ﻿transactional types inherit from
transactional base class

» access through smart pointers

 Turned out to be a lot harder than I expected
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A compiler would have helped
 Hide accessors, validators
 Generate transactional and non-transactional

versions of code as needed
 Let this be a smart pointer
 Leave immutable fields in place, for safe private

access; update read-only pointers as needed;
support safe break/return

 Catch loop-carried private value, potentially stale
private pointer

 Elide redundant checks

  All of this is straightforward
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The Bottom Line

 Keep it simple!
 Don’t expect too much
 Plan on language integration

and compiler support

  Do not oversell !
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